M150. Proposed by Arkady Alt, San Jose, CA, USA.

Let two complex numbers z_1 and z_2 satisfy the conditions

$$z_1 + z_2 = -(i+1),$$

 $z_1 \cdot z_2 = -i.$

Without calculating z_1 and z_2 , find $z_1 \cdot \overline{z_2}$.

Solution by the proposer.

Note that $z_1\cdot\overline{z_2}=rac{z_1}{z_2}\cdot|z_2|^2$. From $(z_1+z_2)^2=2i=-2z_1\cdot z_2$, we immediately obtain $z_1^2+4z_1z_2+z_2^2=0$, or equivalently,

$$\left(\frac{z_1}{z_2}\right)^2 + 4\left(\frac{z_1}{z_2}\right) + 1 = 0.$$

Thus, $\frac{z_1}{z_2}$ is real and negative. Therefore, $z_1\cdot\overline{z_2}$ is also real and negative. Combining this with $|z_1\cdot\overline{z_2}|=|z_1\cdot z_2|=1$, we see that $z_1\cdot\overline{z_2}=-1$.

